296 research outputs found

    Multilinear Operators: The Natural Extension Of Hirota's Bilinear Formalism

    Full text link
    We introduce multilinear operators, that generalize Hirota's bilinear DD operator, based on the principle of gauge invariance of the Ï„\tau functions. We show that these operators can be constructed systematically using the bilinear DD's as building blocks. We concentrate in particular on the trilinear case and study the possible integrability of equations with one dependent variable. The 5th order equation of the Lax-hierarchy as well as Satsuma's lowest-order gauge invariant equation are shown to have simple trilinear expressions. The formalism can be extended to an arbitrary degree of multilinearity.Comment: 9 pages in plain Te

    On the parametrization of solutions of the Yang--Baxter equations

    Full text link
    We study all five-, six-, and one eight-vertex type two-state solutions of the Yang-Baxter equations in the form A12B13C23=C23B13A12A_{12} B_{13} C_{23} = C_{23} B_{13} A_{12}, and analyze the interplay of the `gauge' and `inversion' symmetries of these solution. Starting with algebraic solutions, whose parameters have no specific interpretation, and then using these symmetries we can construct a parametrization where we can identify global, color and spectral parameters. We show in particular how the distribution of these parameters may be changed by a change of gauge.Comment: 19 pages in LaTe

    A multidimensionally consistent version of Hirota's discrete KdV equation

    Full text link
    A multidimensionally consistent generalisation of Hirota's discrete KdV equation is proposed, it is a quad equation defined by a polynomial that is quadratic in each variable. Soliton solutions and interpretation of the model as superposition principle are given. It is discussed how an important property of the defining polynomial, a factorisation of discriminants, appears also in the few other known discrete integrable multi-quadratic models.Comment: 11 pages, 2 figure

    Explode-decay dromions in the non-isospectral Davey-Stewartson I (DSI) equation

    Full text link
    In this letter, we report the existence of a novel type of explode-decay dromions, which are exponentially localized coherent structures whose amplitude varies with time, through Hirota method for a nonisospectral Davey-Stewartson equation I discussed recently by Jiang. Using suitable transformations, we also point out such solutions also exist for the isospectral Davey-Stewartson I equation itself for a careful choice of the potentials

    A new two-dimensional lattice model that is "consistent around a cube"

    Full text link
    For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is "consistent around a cube" (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those assumptions was the "tetrahedron property", which is satisfied by most known equations. We present here one lattice equation that satisfies the consistency condition but does not have the tetrahedron property. Its Lax pair is also presented and some basic properties discussed.Comment: 8 pages in LaTe

    Hamiltonians separable in cartesian coordinates and third-order integrals of motion

    Full text link
    We present in this article all Hamiltonian systems in E(2) that are separable in cartesian coordinates and that admit a third-order integral, both in quantum and in classical mechanics. Many of these superintegrable systems are new, and it is seen that there exists a relation between quantum superintegrable potentials, invariant solutions of the Korteweg-De Vries equation and the Painlev\'e transcendents.Comment: 19 pages, Will be published in J. Math. Phy

    Quantum integrable systems in three-dimensional magnetic fields: the Cartesian case

    Full text link
    In this paper we construct integrable three-dimensional quantum-mechanical systems with magnetic fields, admitting pairs of commuting second-order integrals of motion. The case of Cartesian coordinates is considered. Most of the systems obtained are new and not related to the separation of variables in the corresponding Schr\"odinger equation.Comment: 8 page
    • …
    corecore